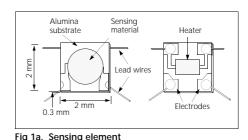


FIS GAS SENSOR SP-53B for AMMONIA DETECTION (Low concentration)


The SP-53B is a tin dioxide semiconductor gas sensor which has a good sensitivity to low concentration ranges of ammonia with improved response speed compared with conventional models.

Structure

Gas sensitive semiconductor material is formed on the alumina substrate on which the gold electrodes are printed. Ă thick film heater of ruthenium-oxide (or platinum) is printed on the reverse of the substrate and placed in the housing (Fig 1).

Operating conditions

Fig 2 shows the standard operating circuit for this model. The change of the sensor resistance (R_s) is obtained as the change of the output voltage across the fixed or variable resistor (R_1). In order to obtain the best performance and specified characteristics, the values of the heater voltage (V_H) circuit voltage (V_c) and load resistance (R_i) must be within the range of values given in the standard operating conditions shown in the Specification table on the next page.

100 mesh

(double)

SUS 316 gauze

Plastic housing

Electrode and

heater pins (Nickel)

Fig 1b. Configuration

Sensitivity characteristics

characteristics curves of the SP-53B

Fig 3 shows the sensitivity

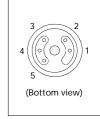
(typical data). Sensitivity

with an increase of gas

logarithmic function.

concentration based on a

characteristics of the FIS gas

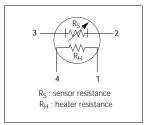
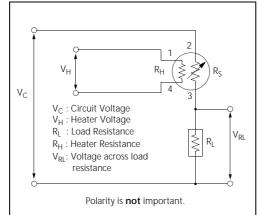

sensors are expressed by the

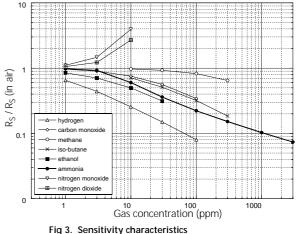
relationship between the sensor

The sensor resistance decreases

resistance and gas concentration.

Sensing element Plastic base


Fig 1d. Equivalent circuit

The sensitivity characteristics of the SP-53B is specified by the following parameters.

- Sensor resistance level: at ammonia 50 ppm
- Sensor resistance change ratio: between ammonia 50 ppm and 150 ppm

See the specification table on the next page for further details.

SPECIFICATIONS

Fig 2. Standard circuit

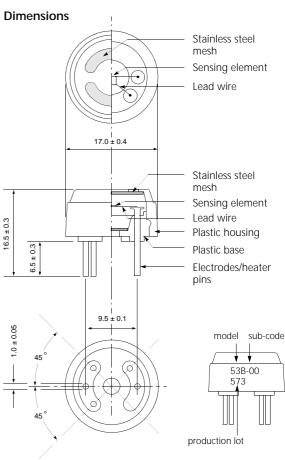
Specifications

A. Standard Operating conditions

Symbol	Parameter	Specification	Conditions etc.
V _H	Heater voltage	5.0 V ± 4 %	AC or DC
V _C	Circuit voltage	5.0 V ± 4 %	AC or DC
RL	Load resistance	Variable	P _S < 15 mW
R _H	Heater resistance	$40 \ \Omega \pm 2 \ \Omega$	at room temperature
P _H	Heater power consumption	400 mW (Typical value)	$P_{\rm H} = V_{\rm H}^2 / R_{\rm H}$
P _S	Power dissipation of sensing element	Less than 15 mW	$P_{S} = \frac{(V_{C} - V_{RL})^{2}}{R_{S}}$

B. Environmental conditions

Symbol	Parameter	Specification	Conditions etc.
Тао	Operating temperature	-10 °C to 60 °C	
Tas	Storage temp	-20 °C to 70 °C	Recommended range
RH	Relative humidity	Less than 95% RH	
(O ₂)	Oxygen concentration	21% (Standard condition)	Absolute minimum level: more than 18%
		The sensitivity characteristics are influenced by the variation in oxygen concentration.	


C. Sensitivity characteristics

Model	SP-53B-00		
Symbol	Parameter	Specification	Conditions etc.
R _S	Sensor resistance	10k Ω to 100 k Ω	at 50 ppm of ammonia/ air
β	Ratio of sensor resistance	0.40 to 0.55	$\frac{R_S \text{ at 150 ppm of ammonia}}{R_S \text{ at 50 ppm of ammonia}}$
Standard Test Conditions:		Temp: 20 °C ± 2 °C Humidity:65% ± 5% (in clean air)	$\begin{array}{l} V_C: \ 5.0 \ V \pm 1\% \\ V_H: \ 5.0 \ V \pm 1\% \\ R_L: 10 \ k\Omega \pm 5\% \end{array}$
Pre-heating time: more than 48 hours			

D. Mechanical characteristics

Items	Conditio	ons	Specifications
Vibration	Frequency: Vertical amplitude: Duration:	100 cpm 4 mm 1 hour	Should satisfy the specifications shown in the
Shock	Acceleration: Number of impacts:	100 G 5 times	sensitivity characteristics.

Please contact

Weight: 1.75g

Scale: mm

E. Parts and Materials

No.	Parts	Materials
1	Sensing element	Tin dioxide (SnO ₂)
2	Aluminum Substrate	Alumina (Al ₂ O ₃)
3	Lead wire	Noble metal alloy (AU-Pd-Mo)
4	Heater	Ruthenium oxide (RuO ₂)
5	Electrode	Gold (Au)
6	Plastic housing	Nylon 46 (UL94HB)
7	Plastic base	Nylon 66 (UL94HB)
8	Stainless steel mesh	SUS 316 (100 mesh, double)
9	Heater/electrode pins	Nickel

December 2007

FIS Inc.
3-36-3, Kitazono
Itami, Hyogo
664-0891 Japan
Tel: +81-72-780-18
Fax: +81-72-785-00

Tel: +81-72-780-1800 Fax: +81-72-785-0073 http://www.fisinc.co.jp

In the interest of continued product improvement, we reserve the right to change design features without prior notice.

ESP53B00.fm 071204094407